Minimum Sum of Squared Difference: You are given two positive 0-indexed integer arrays nums1
and nums2
, both of length n
.
The sum of squared difference of arrays nums1
and nums2
is defined as the sum of (nums1[i] - nums2[i])2
for each 0 <= i < n
.
You are also given two positive integers k1
and k2
. You can modify any of the elements of nums1
by +1
or -1
at most k1
times. Similarly, you can modify any of the elements of nums2
by +1
or -1
at most k2
times.
Return the minimum sum of squared difference after modifying array nums1
at most k1
times and modifying array nums2
at most k2
times.
Note: You are allowed to modify the array elements to become negative integers.
Example 1:
Input: nums1 = [1,2,3,4], nums2 = [2,10,20,19], k1 = 0, k2 = 0 Output: 579 Explanation: The elements in nums1 and nums2 cannot be modified because k1 = 0 and k2 = 0. The sum of square difference will be: (1 - 2)2 + (2 - 10)2 + (3 - 20)2 + (4 - 19)2 = 579.
Example 2:
Input: nums1 = [1,4,10,12], nums2 = [5,8,6,9], k1 = 1, k2 = 1 Output: 43 Explanation: One way to obtain the minimum sum of square difference is: - Increase nums1[0] once. - Increase nums2[2] once. The minimum of the sum of square difference will be: (2 - 5)2 + (4 - 8)2 + (10 - 7)2 + (12 - 9)2 = 43. Note that, there are other ways to obtain the minimum of the sum of square difference, but there is no way to obtain a sum smaller than 43.
Constraints:
n == nums1.length == nums2.length
1 <= n <= 105
0 <= nums1[i], nums2[i] <= 105
0 <= k1, k2 <= 109
Solution
class Solution {
public:
long long minSumSquareDiff(vector<int>& nums1, vector<int>& nums2, int k1, int k2) {
vector<int> difference( (int) 1e5+1);
for(int i = 0; i<nums1.size();i++)
{
difference[abs(nums1[i] - nums2[i])]++;
}
int value = 0, left = k1+k2;
int acc = 0;
for(int i = (int) 1e5; i>=0; i--)
{
acc = difference[i];
if(acc <= left)
{
if(i<=1)
return 0;
difference[i-1] += difference[i];
difference[i]=0;
left -= acc;
}
else
{
if(i==0)
return 0;
difference[i] -= left;
difference[i-1] += left;
break;
}
}
long long answer = 0;
for(int i = 1ll; i<=1e5; i++)
{
answer += (long long)difference[i] * ((long long)i*i);
}
return answer;
}
};
from heapq import heapify, heappush, heappop
class Solution:
def minSumSquareDiff(self, nums1: List[int], nums2: List[int], k1: int, k2: int) -> int:
heap = [ -abs(x-y) for x, y in zip(nums1, nums2)]
s = -sum(heap)
if k1+k2 >= s: return 0
delta = k1 + k2
heapify(heap)
n = len(nums1)
while delta > 0:
d = -heappop(heap)
gap = max(delta//n, 1) if heap else delta
d -= gap
heappush(heap, -d)
delta -= gap
return sum(pow(e,2) for e in heap)
class Solution {
public long minSumSquareDiff(int[] nums1, int[] nums2, int k1, int k2) {
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> (b - a));
pq.add(0);
for (int i = 0; i < nums1.length; i++) {
int diff = Math.abs(nums1[i] - nums2[i]);
if (diff > 0)
pq.add(diff);
}
int k = k1 + k2;
int prev = 0, cnt = 0;
while (k > 0 && !pq.isEmpty()) {
int cur = pq.poll();
long x = (prev - cur) * cnt;
if (x <= k) {
prev = cur;
cnt++;
k -= x;
} else {
int a = k / cnt;
int b = k % cnt;
int c = prev - a;
for (int i = 0; i < cnt - b; i++)
pq.add(c);
for (int i = 0; i < b; i++)
pq.add(c - 1);
pq.add(cur);
k = 0;
}
}
long ans = 0;
for (long diff : pq)
ans += (long)diff * diff;
return ans;
}
}
Happy Learning – If you require any further information, feel free to contact me.