Successful Pairs of Spells and Potions: You are given two positive integer arrays spells
and potions
, of length n
and m
respectively, where spells[i]
represents the strength of the ith
spell and potions[j]
represents the strength of the jth
potion.
You are also given an integer success
. A spell and potion pair is considered successful if the product of their strengths is at least success
.
Return an integer array pairs
of length n
where pairs[i]
is the number of potions that will form a successful pair with the ith
spell.
Example 1:
Input: spells = [5,1,3], potions = [1,2,3,4,5], success = 7 Output: [4,0,3] Explanation: - 0th spell: 5 * [1,2,3,4,5] = [5,10,15,20,25]. 4 pairs are successful. - 1st spell: 1 * [1,2,3,4,5] = [1,2,3,4,5]. 0 pairs are successful. - 2nd spell: 3 * [1,2,3,4,5] = [3,6,9,12,15]. 3 pairs are successful. Thus, [4,0,3] is returned.
Example 2:
Input: spells = [3,1,2], potions = [8,5,8], success = 16 Output: [2,0,2] Explanation: - 0th spell: 3 * [8,5,8] = [24,15,24]. 2 pairs are successful. - 1st spell: 1 * [8,5,8] = [8,5,8]. 0 pairs are successful. - 2nd spell: 2 * [8,5,8] = [16,10,16]. 2 pairs are successful. Thus, [2,0,2] is returned.
Constraints:
n == spells.length
m == potions.length
1 <= n, m <= 105
1 <= spells[i], potions[i] <= 105
1 <= success <= 1010
Solution:
Explanation
For each spell
,
it needs ceil integer of need = success * 1.0 / spell
.
Binary search the index
of first potion >= need
in the sorted potions
.
The number of potions that are successful are potions.length - index
Accumulate the result res
and finally, return it.
Complexity
Time O(mlogm + nlogm)
Space O(n)
vector<int> successfulPairs(vector<int>& spells, vector<int>& potions, long long success) {
sort(potions.begin(), potions.end());
vector<int> res;
for (int a: spells) {
long need = (success + a - 1) / a;
auto it = lower_bound(potions.begin(), potions.end(), need);
res.push_back(potions.end() - it);
}
return res;
}
def successfulPairs(self, spells, potions, success):
potions.sort()
return [len(potions) - bisect_left(potions, (success + a - 1) // a) for a in spells]
public int[] successfulPairs(int[] spells, int[] potions, long success) {
Arrays.sort(potions);
TreeMap<Long, Integer> map = new TreeMap<>();
map.put(Long.MAX_VALUE, potions.length);
for (int i = potions.length - 1; i >= 0; i--) {
map.put((long) potions[i], i);
}
for (int i = 0; i < spells.length; i++) {
long need = (success + spells[i] - 1) / spells[i];
spells[i] = potions.length - map.ceilingEntry(need).getValue();
}
return spells;
}
class Solution {
typedef long long ll;
typedef long double ld;
typedef vector<ll> vi;
typedef pair<ll, ll> pi;
#define endl '\n'
static const ll mod = 1e9;
public:
vector<int> successfulPairs(vector<int>& s, vector<int>& p, long long suc) {
ll n = s.size(), m = p.size();
vector<int> res(n, 0);
sort(p.begin(), p.end());
for (ll i = 0;i < n;i++) {
ll l = 0,
r = m - 1,
ind = -1;
while (l <= r) {
ll m = l + ((r - l) >> 1),
prod = ll(s[i]) * ll(p[m]);
if (prod >= suc) {
ind = m;
r = m - 1;
continue;
}
l = m + 1;
}
if (ind > -1)
res[i] = m - ind;
}
return res;
}
};
Happy Learning – If you require any further information, feel free to contact me.