Write a Program to implement Dijkstra’s algorithm.
Input and Output Format:
Refer sample input and output.
[Note: Use %11d for formatting the output]
[All text in bold corresponds to input and the rest corresponds to output]
Sample Input and Output:
Enter the number of nodes in the graph
6
Enter the number of edges in the graph
9
Enter the start node, end node and weight of edge no 0
0 1 4
Enter the start node, end node and weight of edge no 1
0 3 6
Enter the start node, end node and weight of edge no 2
2 1 2
Enter the start node, end node and weight of edge no 3
1 3 1
Enter the start node, end node and weight of edge no 4
3 2 5
Enter the start node, end node and weight of edge no 5
0 4 100
Enter the start node, end node and weight of edge no 6
5 4 8
Enter the start node, end node and weight of edge no 7
3 5 21
Enter the start node, end node and weight of edge no 8
2 5 5
Enter the source matrix:
3
Vertex Distance from Source
0 5
1 1
2 3
3 0
4 16
5 8
Solution
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], int sptSet[], int V)
{
// Initialize min value
int min = INT_MAX, min_index, v;
for (v = 0; v < V; v++)
if (sptSet[v] == 0 && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
// A utility function to print the constructed distance array
void printSolution(int *dist, int V)
{
int i;
printf("Vertex Distance from Source\n");
for (i = 0; i < V; i++)
printf("%d %d\n", i, dist[i]);
}
int min(int x, int y){
return x<y ? x : y;
}
// Funtion that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
int allVisited(int n, int *visited){
int i, res = 1;
for(i = 0; i < n; i++)
res &= visited[i];
return res;
}
void dijkstra(int **graph, int src, int V){
int *dist = (int*)malloc(V * sizeof(int));
int *visited = (int*)malloc(V * sizeof(int));
// memset(dist, INT_MAX, V * sizeof(int));
// memset(visited, 0, V * sizeof(int));
int i;
for(i=0;i<V;i++) dist[i] = 99999, visited[i] = 0;
dist[src] = 0;
// for(i=0;i<V;i++){
// for(v=0;v<V;v++)
// printf("%d ",graph[i][v]);
// printf("\n");
// }
while(!allVisited(V, visited)){
visited[src] = 1;
for(i = 0; i < V; i++){
if(!visited[i] && graph[src][i]){
dist[i] = min(dist[i], graph[src][i] + dist[src]);
// printf("%d, %d + %d\n",dist[i],graph[src][i], dist[src]);
}
}
src = minDistance(dist, visited, V);
}
// print the constructed distance array
printSolution(dist, V);
}
// driver program to test above function
int main()
{
int **graph;
int V,src,i,edges,snode,enode,weight;
printf("Enter the number of nodes in the graph\n");
scanf("%d",&V);
printf("Enter the number of edges in the graph\n");
scanf("%d",&edges);
graph = (int **)malloc(V * sizeof(int *));
for(i=0;i<V;i++)
*(graph+i) = (int *) calloc(V,sizeof(int));
for(i = 0;i<edges;i++)
{
printf("Enter the start node, end node and weight of edge no %d\n",i);
scanf("%d%d%d",&snode,&enode,&weight);
*(*(graph+snode)+enode) = weight;
*(*(graph+enode)+snode) = weight;
}
printf("Enter the source matrix:\n");
scanf("%d",&src);
dijkstra(graph, src, V);
return 0;
}
Happy Learning – If you require any further information, feel free to contact me.