Write a Program to implement Kruskal’s algorithm.
Input and Output Format:
Refer sample input and output.
[All text in bold corresponds to input and the rest corresponds to output]
Sample Input and Output:
Enter the number of vertices
4
Enter the number of edges
5
Enter source, destination and weight of edge 1
0 1 10
Enter source, destination and weight of edge 2
0 2 6
Enter source, destination and weight of edge 3
0 3 5
Enter source, destination and weight of edge 4
1 3 15
Enter source, destination and weight of edge 5
2 3 4
Following are the edges in the constructed MST
Edge 2 and Edge 3 with distance 4
Edge 0 and Edge 3 with distance 5
Edge 0 and Edge 1 with distance 10
Solution
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// a structure to represent a weighted edge in graph
struct Edge{
int src, dest, weight;
};
// a structure to represent a connected, undirected and weighted graph
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges. Since the graph is
// undirected, the edge from src to dest is also edge from dest
// to src. Both are counted as 1 edge here.
struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = (struct Graph*) malloc( sizeof(struct Graph) );
graph->V = V;
graph->E = E;
graph->edge = (struct Edge*) malloc( graph->E * sizeof( struct Edge ) );
return graph;
}
// A structure to represent a subset for union-find
struct subset
{
int parent;
int rank;
};
// A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
}
// The main function to construct MST using Kruskal's algorithm
void KruskalMST(struct Graph* graph)
{
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);
int i;
// for(i=0;i<graph->E; i++)
// printf("%d %d %d\n", graph->edge[i].src, graph->edge[i].dest, graph->edge[i].weight);
struct subset subsets[graph->V];
for(i=0;i<graph->V;i++)
subsets[i].parent = i, subsets[i].rank = 1;
printf("Following are the edges in the constructed MST\n");
for( i = 0; i < graph->E; i++){
if(find(subsets, graph->edge[i].src) != find(subsets, graph->edge[i].dest)){
Union(subsets, graph->edge[i].src, graph->edge[i].dest);
printf("Edge %d and Edge %d with distance %d\n",graph->edge[i].src, graph->edge[i].dest, graph->edge[i].weight);
}
}
// // print the contents of result[] to display the built MST
//
// for (i = 0; i < e; ++i)
// printf("Edge %d and Edge %d with distance %d\n", result[i].src, result[i].dest, result[i].weight);
// return;
}
// Driver program to test above functions
int main()
{
int V;
int E;
int i;
printf("Enter the number of vertices\n");
scanf("%d",&V);
printf("Enter the number of edges\n");
scanf("%d",&E);
struct Graph* graph = createGraph(V, E);
for(i=0;i<E;i++){
printf("Enter source, destination and weight of edge %d\n",i+1);
scanf("%d",&(graph->edge[i].src));
scanf("%d",&(graph->edge[i].dest));
scanf("%d",&(graph->edge[i].weight));
}
KruskalMST(graph);
return 0;
}
Happy Learning – If you require any further information, feel free to contact me.