Peak Index in a Mountain Array: Let’s call an array arr
a mountain if the following properties hold:
arr.length >= 3
- There exists some
i
with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr
that is guaranteed to be a mountain, return any i
such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
.
Peak Index in a Mountain Array LeetCode
Problem: https://leetcode.com/problems/peak-index-in-a-mountain-array/submissions/
Example 1:
Input: arr = [0,1,0] Output: 1
Example 2:
Input: arr = [0,2,1,0] Output: 1
Example 3:
Input: arr = [0,10,5,2] Output: 1
Constraints:
3 <= arr.length <= 104
0 <= arr[i] <= 106
arr
is guaranteed to be a mountain array.
Follow up: Finding the O(n)
is straightforward, could you find an O(log(n))
solution?
Solution:
Time Complexity: O(logn)
Algorithm: Binary Search
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int beg = 0;
int end = arr.length-1;
int mid = beg - (beg-end)/2;
while(beg < end){
if(arr[mid]<arr[mid+1]){
beg = mid + 1;
}
else{
end = mid;
}
mid = beg - (beg-end)/2;
}
return mid;
}
}
class Solution {
public:
int peakIndexInMountainArray(vector<int>& arr) {
int beg = 0;
int end = arr.size()-1;
int mid = beg - (beg-end)/2;
while(beg < end){
if(arr[mid]<arr[mid+1]){
beg = mid + 1;
}
else{
end = mid;
}
mid = beg - (beg-end)/2;
}
return mid;
}
};
class Solution:
def peakIndexInMountainArray(self, arr: List[int]) -> int:
beg = 0
end = len(arr) - 1
mid = int(beg - (beg - end)/2)
while beg < end:
if (arr[mid] < arr[mid+1]):
beg = mid + 1
else:
end = mid
mid = int(beg - (beg - end)/2)
return mid;
Happy Learning – If you require any further information, feel free to contact me.